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ABSTRACT: Alkanediamines serve as neutral guests for
the recently discovered host pillar[5]arene. The proposed
[2]pseudorotaxane nature of the superstructure of the 1:1
host-guest complexes is supported by the template-direc-
ted synthesis of a related [2]rotaxane. A synthetic route to
monofunctional pillar[5]arenes has also been developed,
allowing for the creation of a fluorescent sensor for alkyl-
amine binding. The precursors to this host could act as
starting points for a large library of monofunctional pillar-
[5]arene macrocycles.

Supramolecular chemists have extensively studied the host-
guest chemistry1 of macrocycles such as cyclodextrins,2

crown ethers,3 calixarenes,4 and cucurbiturils.5 An important
application of these macrocyclic hosts is their ability to bind to,
and often to act as sensors for, a variety of guests (analytes),
including metal and organic cations,6 neutral molecules,7 anions,8

and biomolecules.9

Pillar[5]arene, first reported by Ogoshi et al.10 in 2008, is the
product of the condensation of 1,4-dimethoxybenzene and
formaldehyde in the presence of the Lewis acid BF3 3OEt2.
The hydroquinone units of this macrocycle are connected by
methylene bridges in the para positions of the benzene rings,
affording a D5-symmetric structure with an overall cylindrical or
pillarlike shape. Pillar[5]arene and its derivatives have been
shown11 to act as good hosts for viologens. The stabilization of
these host-guest complexes can be attributed10 to charge-trans-
fer interactions occurring between the electron-rich cavities
inside themacrocycles and the encircled electron-poor viologens.
The construction of pseudorotaxanes and [n]rotaxanes from
polyviologen threads and pillar[5]arene macrocycles using these
interactions has been reported.11d,12

Despite extensive research11 on the interactions between
viologens and pillar[5]arenes, only a minimal effort13 has been
invested to date in studying the affinities of other small-molecule
guests for this new host. On the basis of their affinities for
cucurbit[6]uril,5a a well-studied host with a similar structure and
shape, we speculated that alkylamines and alkanediamines might
be ideal guests for pillar[5]arenes.

Aliphatic amines are widely used in industry (e.g., hexamethy-
lenediamine is produced on the million ton scale annually and
used in the production of nylon-6,6) and known to be slightly
toxic.14 Tuaminoheptane and methylhexanamine are stimulants
banned by the World Anti-Doping Agency.15 Identification of

these compounds has largely been performed using mass
spectrometry.16 For these and other reasons, we decided to
investigate the ability of pillar[5]arenes to both encapsulate and
detect the presence of alkanediamines in aqueous solution.

We first investigated the ability of alkanediamines to
form 1:1 complexes with 1,4-dimethoxypillar[5]arene
(DMpillar[5]arene).10 Host-guest complexation was assessed
by 1H NMR titration of DMpillar[5]arene into a 15 mM solu-
tion of 1,8-diaminooctane in CDCl3 (Figure 1). Addition of
4.0 equiv of the host resulted in upfield shifts of 0.7 ppm for

Figure 1. 1H NMR titration (500 MHz, CDCl3, 298 K) of DMpillar-
[5]arene into a 15 mM solution of 1,8-diaminooctane in CDCl3. Com-
plexation with the electron-rich cavity of DMpillar[5]arene (host)
causes the protons of 1,8-diaminooctane (guest) to shift upfield. A Ka

value of 70 ( 10 M-1 was calculated for the complex.
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the HB protons of the guest. An association constant (Ka) of
70 ( 10 M-1 in this nonpolar solvent17 was calculated using
curve-fitting analysis [see the Supporting Information (SI)]. The
uncharged aliphatic guest had no significant impact on the
observed chemical shifts of the host protons. Binding of
n-octylamine in the cavity of DMpillar[5]arene was also probed
by a 1HNMR titration, and aKa value of 20( 2M-1 was obtained
(see the SI).18 Investigations of the host-guest complexation
between DMpillar[5]arene and both 1,8-diaminooctane and
n-octylamine employing Job plots (see the SI) indicated the
formation of 1:1 complexes believed to be of a pseudorotaxane
type19 (i.e., with the guest threaded through the host cavity).

We synthesized a [2]rotaxane from the host-guest complex
formed between DMpillar[5]arene and 1,8-diaminooctane by
reacting the primary amino groups of the guest with 3,5-di-tert-
butylbenzaldehyde. Subsequent reduction (Scheme S1 in SI) of the
diimine with NaBH4 in THF gave the [2]rotaxane 2 in 7% yield.20

Even though this template-directed synthesis lacks efficiency at this
time, all of the reactants, except for DMpillar[5]arene, are commer-
cially available, rendering the [2]rotaxane an easily attainable
mechanically interlocked molecule (MIM). The 1H NMR spec-
trum (Figure 2) of 2 reveals dramatic upfield shifts for the centrally
located methylene groups on the dumbbell component of
DMpillar[5]arene (e.g., the proton HD resonance is at-1.2 ppm)
compared with those for the free dumbbell 1. The synthesis and
characterization of the [2]rotaxane 2 is a first step in the production
of a wide range of MIMs in which pillar[5]arenes serve as the ring
compounds. It also implies the formation of a 1:1 complex of a
[2]pseudorotaxane nature as a precursor to the [2]rotaxane.

Having confirmed the pseudorotaxane nature of the host-
guest complex, we sought to prepare a substituted pillar[5]arene
capable of sensing the presence of the guest. Monofunctionaliza-
tion of macrocycles is a known strategy21 for incorporating sensor
capabilities without significantly altering the binding ability of the
host. We devised a synthetic approach (Scheme 1) wherein a mix-
ture of two monomers affords a monofunctionalized pillar[5]arene
(Figure 3)22 onto which an azide moiety can subsequently be
installed, allowing further functionalizationwith a fluorophore using
the Huisgen-type23 copper(I)-catalyzed 1,3-dipolar azide-alkyne
cycloaddition (CuAAC).

Employing this strategy (Scheme 1), we obtained the monofunc-
tionalized pillar[5]arene 3 by condensation of 5.0 equiv24 of 1,4-
dimethoxybenzene with 1.0 equiv of the unsymmetrical hydroqui-
none derivative 1-(2-bromoethoxy)-4-methoxybenzene25 and 5.0
equiv of paraformaldehyde in the presence of BF3 3OEt2. The Br
on 3 was substituted with an azide group, creating pillar[5]arene
derivative 4, which can be functionalized through CuAAC. This
example is the first involving a pillar[5]arene substituted with a
functional group at a single position and able to undergo further
reaction. Since CuAAC is high-yielding, functional-group-tolerant,
and compatible with a wide range of substrates,26 4 can serve as a
general precursor for a whole array of substituted pillar[5]arenes.

Primary amines are well-known27 to quench fluorescence
through photoinduced electron transfer (PET). In order to
detect alkylamines and alkanediamines at low concentrations

Figure 2. Comparison of the 1H NMR spectra (CDCl3, 500 MHz,
15 mM, 298 K) of dumbbell 1 and [2]rotaxane 2 containing pillar-
[5]arene. Because of shielding caused by DMpillar[5]arene, the inner
aliphatic region of 1 is shifted upfield to the extent that protons C and D
exhibit negative chemical shifts.

Figure 3. Models of three types of nonsymmetric pillar[5]arenes: (a)
differentiated-rim pillar[5]arene; (b) copillar[5]arene, where one hy-
droquinone unit is different from the other four; c) monofunctional
pillar[5]arene. Green spheres represent generic functional groups; H
atoms have been omitted for clarity.

Scheme 1. Synthesis of Pyrene-Functionalized Pillar-
[5]arene 6; The Energy-Minimized Structure (MMFF94) of 6
Is Also Shown (H Atoms Have Been Omitted for Clarity)
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by fluorescence, we chose to react the alkyne-substituted 1-pyr-
enemethanol derivative 5 with 4 to give the monofunctional
pillar[5]arene 6. Since this derivative can be dissolved in 1:1 (v/v)
MeCN/H2O at the low concentration required for fluorescence
spectroscopy, titrations with various alkylamines and alkanedia-
mines into a solution of 6 in the highly polar solvent could be
followed by fluorescence spectroscopy.

The quenching of fluorescence (Figure 4) was found to be
significant enough that we could measure quantitatively
(Table 1) theKa values for a wide range of 1:1 complexes formed
with 6. The association constants for the series of alkanediamines
containing three to eight carbon atoms are all in the vicinity of
104 M-1 and hence on the same order of magnitude as the Ka

values for the formation of complexes between pillar[5]arene

and viologen salts reported by Ogoshi et al.10 Once again, the
existence of 1:1 complexes was confirmed by making a Job plot
with 1,8-diaminooctane (see the SI). The large difference
between these Ka values and those observed for DMpillar-
[5]arene and 1,8-diaminooctane by 1H NMR titration is attrib-
uted to the very different solvent polarities of CDCl3 and
aqueous MeCN as well as the significant role that hydrophobic
interactions play in the complexation of 6 with its guests.

Alkylamines with only a single terminal amine group had a
smaller effect on the fluorescence of 6. The two possible
orientations of an n-alkylamine inside the cavity of 6 have the
terminal amino group either directed toward the pyrene residue
(and hence able to quench the fluorescence) or facing away from
the fluorophore (and thus unable to cause such a profound
effect). The orientation issue, coupled with the loss of one amino
group (relative to an alkanediamine) to interact with the oxygen
atoms on the rim of 6 by means of hydrogen bonding, offers an
explanation for the lower Ka values. Titrations with 1,6-hexanediol
did not decrease the fluorescence of 6, even after the addition of
5.0 equiv of diol. 1-Aminoadamantane, which is too bulky tofit inside
the cavity of pillar[5]arene,10 only decreased fluorescence to 85% of
the initial intensity after addition of 5.0 equiv.

Titration of these amines into solutions of DMpillar[5]arene
or pyrene employing the same conditions did not result in a
reduction of fluorescence, indicating that only 6 provides both a
suitable cavity for the guest and a fluorophore that can interact
photochemically with the guest. The relatively strong complexes
formed between the alkanediamines and pillar[5]arene are most
likely the result of hydrophobic interactions between the alipha-
tic chain and the pillar[5]arene cavity in addition to [C-H 3 3 3π]
interactions.13a Although hydrogen bonding between the primary
amino groups and the oxygen atoms on the rims of the macrocycle
may also contribute to the host-guest interactions, further investi-
gations are required to establish the mode of binding between the
pillar[5]arenes and their amine and diamine guests.

In conclusion, we have discovered and evaluated the encapsu-
lation of uncharged aliphatic amines by the recently reported
macrocycle pillar[5]arene and exploited the binding motif to
prepare a [2]rotaxane with pillar[5]arene as the ring component.
We have also devised a synthetic strategy to prepare monofunc-
tionalized derivatives from a single azide-functionalized com-
pound. By installation of a fluorophore via CuAAC “click” chemi-
stry, a sensor for alkanediamines was obtained. Future work will
probe the many interactions between pillar[5]arenes and alkyl-
amines and target the design of novel MIMs.
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Table 1. Association Constants for 6 and Alkylamines
Calculated from Fluorescence Quenching Experimentsa
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λex = 355 nm. Ka values were calculated using curve-fitting analysis
software (see the SI).
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